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Abstmct. Two new models of anisotropic spiral self-avoiding loops on the square lattice 
are considered. These models are closely related to the models of anisotropic spiral 
self-avoiding walks, which were recently proposed by Manna. The generating function for 
the number U,, of anisotropic spiral self-avoiding loops with n steps is derived for each 
model. It is shown that the asymptotic form of U, ( n  must be even) is n-"*p" where p 
is the connective constant of the corresponding Manna model. 

1. Introduction 

Recently Manna (1984) has proposed two models of spiral self-avoiding walk (SSAW) 

on the square lattice, with spiral constraints after east and west steps but not after 
north and south steps. We label the four possible steps by N, E, S, W in an obvious 
notation. In the first model (two-choice anisotropic SAW), an N (S) step and a W 
(E) step cannot be followed by an N (S) step. In the second model (three-choice 
anisotropic SSAW), a W (E)  step cannot be followed by an N (S) step. The second 
model is less restictive than the first model. The asymptotic behaviour of such walks 
appears to be (Guttmann and Wallace 1986) 

C, - Epn exp(adn)nP 

R, - Fn" (1) 

where p = -0.9, v =  0.855, C, is the number of distinct n-step walks and R,  is the 
root mean-square end-to-end distance of all n-step walks. The connective constant is 
known exactly (Whittington 1985): 

p = (1 +d5)/2 first model 

= 2  second model. (2) 

The asymptotic form for the number U, of self-avoiding loops with n steps is 
usually written in the form 

U, - Ep"nh (3 )  
where p is the connective constant for the self-avoiding walks on a d-dimensional 
lattice. Notice that this form is not true unless n is suitably restricted. For the square 
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lattice, n must be even. The existence of the exponent h has never been established, 
though it is consistent with numerical evidence. The weaker result that log( U 2 , ) / ( 2 n )  
converges to p is due to Hammersley (1961). It has been pointed out by de Gennes 
(1979) that h = -dv where v is the root mean-square end-to-end distance exponent. 
What de Gennes has shown by an ingenious but entirely formal argument is that 
self-avoiding walks are obtained as the degenerate limit of the n-vector model. The 
scaling laws of equilibrium statistical mechanics thus relate h (if  it exists) to v (if it 
exists). It is pointed out by Manna (1985) that the scaling relation h = -dv is not 
obeyed by the spiral self-avoiding loops on the square lattice. The scaling relation 
fails also for spiral self-avoiding loops on the triangular lattice (Lin et al 1986). It 
should be mentioned that the argument of de Gennes about the number of n-step 
self-avoding loops refers to such loops without the spiral constraint. 

The purpose of the present paper is to study anisotropic spiral-self-avoiding loops 
on the square lattice. 

2. The two-choice anisotropic spiral self-avoiding loops 

We have studied a new model of anisotropic spiral self-avoiding loops on the square 
lattice. This model is closely related to Manna’s model of two-choice anisotropic spiral 
self-avoiding walks. In addition to the constraints described in his model, we require 
that if the first step is N (or S ) ,  then the final step before returning to the starting point 
cannot be W (or E). Exact results are derived for the number U, of such loops with 
n steps. 

There are four possible steps for the first move. The corresponding generating 
functions are denoted by GA where A = N, S ,  E or W. It is obvious that GN = Gs and 
GE = Gw. The overall generating function is 

m 

= c unxn.  
n = l  

(4) 

Consider GE first. The constraints restrict the shape of an arbitrary loop to be an 
r-step staircase. Loops of r S 3 are shown in figure 1. We write 

where G, is the generating function corresponding to all r-step staircases. A loop with 
r = 1 and perimeter length 2( m + 1) (see figure 1) will occur m times, depending on 
the position of the starting point on the bottom. Therefore we have 

There are (“‘:I) ways to construct a loop with r = 2 and perimeter length 2(m +4), and 
each loop will occur ( m  + 2) times depending on the position of the starting point. 
Consequently we have 



Number of anisotropic spiral self-avoiding loops 

r : l  7 
1883 

m 

Figure 1. Examples of the first category of anisotropic spiral self-avoiding loops where 
the starting point can be anywhere around the loop. 

There are three different types of loops with r = 3 (see figure 1 )  and we have 

(8) = 4xL4( 1 - x ~ ) - ~  + 1 - x ~ ) - ~ .  

In the general case with r 3 2, we have 

where 2 r - 2 3 s a r  and 

F(r,  r + k )  = [ ( r - 2 ) ( r - 3 ) .  . . ( r -  k- l ) ] [ ( r +  l ) ( r + 2 ) .  . . ( r + k ) ] / k !  (k+ l ) ! .  

It follows from the identity 
(10) 

that 
cc 

G, = (s  + l ) F ( r ,  s ) x ~ ( ~ + ' + I )  ( 1  - x2)-S-Z, 
s 

Summing up G,, we get a surprisingly simple result: 
m 

GE(x)= UE,nXn 
n = l  

-1 - 2x 2 [( 1 + 2x4- x6)( 1 + x'+ x4)-'/2( 1 - 3x2+ x4)-1'2 - 1 + x'] 

= x4+2x6+3x8+7x10+ 17x12+40x14+97x16+. . . (13) 
where 
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as n + m, and p = (1  + 5II2)/2 is a root of the equation 1 -3x2+x4  = 0. Notice that p 
is the connective constant of Manna’s model (Whittington 1985). 

Consider GN next. The constraints restrict the loops to be of two categories, as 
shown in figures 1 and 2. We denote the corresponding generating functions by GNi 
( i  = 1,2). For loops of the first category (see figure l ) ,  each loop corresponding to an 
r-step staircase occurs r times, depending on the position of the starting point. 
Following exactly the same procedure as before, we get 

where 

m + s - 1  
G:( r > 1) = r 1 1 ( ) F (  r, 

m = l  s S 

and 2r - 2 3 s 3 r. Summing up G:, we have 
a, 

GNi(x)= 1 U l , n X n  
n = l  

-1 - 2x 4 [ 1 + (1 + x2 - x4)( 1 +x2+  x4)-”7 1 - 3x2+x4)-1/2] 

= x4+ x6+ x8 + 3 ~ ~ ~ + 7 x ’ ~ +  16xI4+39xi6+. . . (16) 

For loops of the first category, their contribution to the total generating function is 
where Ul*n + Up-’ as n +a. 

m 

2(G,+ GNI) = 1 np,,Xn 
n = l  

= 2x4 - x2+  (x2+ x4+ 3x6- 2x8)( 1 - 2x2 - x4- 2x6+ x8)-I’2 

(17) 
= 4 ~ ~ + 6 ~ ~ + 8 ~ ~ + 2 0 ~ ~ ~ + 4 8 ~ ~ ~ +  1 1 2 ~ ’ ~ + 2 7 2 x ~ ~ + .  . . 

where P,, is the number of distinct loops with perimeter length n (each loop occurs n 
times since the starting point can be anywhere around the loop). We have 

a C p n X n  =;(I - x ~ + x ~ ) - ; ( ~ + x ~ + ~ ~ ) ~ / ~ ( ~  -3x2+x4)1/2.  (18) 
n = l  

Figure 2. An example of the second category of anisotropic spiral self-avoiding loops 
where the first step must be a north step and the starting point is unique, as shown by a cross. 
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For loops of the second category, the first step must be a north step and the starting 
point is unique. An example is shown in figure 2 where the starting point is marked 
by a cross. Following the same procedure as before, we obtain 

m 

where 

F'(r, r +  k - 1) = [ ( r  -2)(r -3) . . . ( r  - k - l ) ] [ r ( r+ 1) . . . ( r +  k - l)]/(k!)* 

and 2r -3  5 s 2 r - 1. Summing up G:, we have 

GNZ(X) = c u2,nxn 
n 

= x4[ (1 - x2 + x4)( i + x2 + x4)-1/2( 1 - 3x2 + x4)-lj2 - 1112 

= X ~ + ~ X ~ ~ + ~ X ~ ~ + ~ O X ~ ~ + ~ ~ X ~ ~ + .  . . (20) 

where U2,n + Uw-' as n +CO. 

Finally we have 

G ( x )  = ~ ( G E +  G N I  + GNZ) 

= x2[x2 - 1 + (1 +2x2 + 2x4 - x6)( i  + x2 + x4)-1/2(1 - 3x2 + x 4 ) - 1 / 2 ~  

=4x4+6x6+  1 0 ~ ~ + 2 4 ~ ~ ~ + 5 6 x ~ ~ +  1 3 2 ~ ' ~ + 3 2 0 x ' ~ + .  . 

= E  unxn 
n 

where 

U,, + 2(21rn)- ' /~5- ' /~p" 

as n + m .  
If we remove the constraint for the last step before returning to the starting point, 

then loops of the third category appear. An example is shown in figure 3 where the 
starting point is marked by a cross. These loops contribute to GN but not to G,. Due 
to the complexity of these loops, we are not able to calculate their contribution. 

Figure 3. An example of the third category of loops when we remove the constraint for 
the last step. T h e  starting point is shown by a cross. 
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3. The three-choice anisotropic spiral self-avoiding loops 

A similar model of anisotropic spiral self-avoiding loops is considered. Our model is 
closely related to Manna's model of three-choice anisotropic SSAW. In his model, a 
W (E) step cannot be followed by an N ( S )  step. We further require that if the first 
step is N (S), then the final step cannot be W (E). These constraints restrict the shape 
of an arbitrary loop to be a raising staircase followed by a lowering staircase, as shown 
in figure 4.  

The generating function for U,, is 
00 

G ( x )  = U n x n  = E  nPnx" 
n = l  

where P, is the number of distinct loops with perimeter length n. We define 
oc 00 

S ( X ,  Y )  = C Pr,sxSyr = C Sm(X, Y )  
r , s = l  m = l  

where P,,, is the number of distinct loops with vertical height r and horizontal width 
s and S, is the generating function corresponding to all loops whose width at top is 
rn (see figure 4 ) .  It is simple to show that 

'x 

S m + , = x s m + ~  Sm+n+, ( 2 4 )  
n = O  

where So = y and m 3 0. It follows from equation ( 2 4 )  that 

Sm+l = ( 1 + x - y ) S ,  - XS,- 1 .  ( 2 5 )  
The characteristic equation for the recursion relation ( 2 5 )  is 

f ( z )  = z2- (1 + x  - y ) z + x  = ( 2  - z + ) ( z  - z - )  = 0 

2 ,  = t{l + x  - y f [( 1 + x - y ) 2  -4x11'2). 

where 

Figure 4. An example of a three-choice anisotropic spiral-self-avoiding loop. The starting 
point can be anywhere around the loop. 
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The general solution of equation ( 2 5 )  is 

S,,, = azi: + bz; 

where 

a + b = S ,  az++ bz- = S , .  

For x + 0,  we have 

s, = O(X")  z+ = O( 1 )  z -  = O ( x ) .  

Therefore we have a = 0 or 

s, = s,z-. 
It follows from equations (23) ,  (24 )  and ( 2 5 )  that 

s , = x y + y s  

s, = xy (x  - y )  + y (  1 + x - y ) S .  

S (  x, y ) = ;< ( 1 - x - y ) - [ ( 1 - x - y ) 2  - 4xy]'"}. 

c P,X" = c P,,sX2(r+s) = S(X2, x 2 )  

= ;[ 1 - 2x2 - ( 1  - 4x2)"2] 

Substituting SI and S2 into equation (31),  we obtain 

Consequently we have 

and 

U,,=nP,,=2(, n -2  ) = ( 2 n ~ ) - ' / ~ 2 " ( 1 + 3 / 4 n +  ...) 
zn-1 

( 3 2 )  

(33) 

(35) 

for n(even integers)-,co. Notice that the connective constant of Manna's model is 
two (Whittington 1985).  Finally we obtain 

G ( x )  = ( x  d/dx)S(x2, x') 

=2x2[(1  -4x2)-1/'-1]. (36) 
The first-order correction to the leading term of U,, (see equation (35)) does not support 
the conjecture that non-integral correction-to-scaling exponents are found in self- 
avoiding walk problems. 

4. Summary 

We have studied two new models of anisotropic spiral self-avoidng loops on the square 
lattice. These models are closely related to Manna's models of anisotropic SSAW. In 
addition to the constraints described in his two models, we further require that if the 
first step is N ( S ) ,  then the final step cannot be W (E). An exact result is derived for 
the number U,, of n-step loops. It is shown that the asymptotic form of U,, ( n  must 
be even) is n-'/'p', where p is the connective constant of the corresponding Manna 
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model. This asymptotic form is similar to that generally accepted for the number of 
ordinary self-avoiding polygons, U,, OC nhp",  where h = -3 in two dimensions, but the 
change in the critical exponent should be noted. The scaling relation h = -dv connect- 
ing the exponent h, the lattice dimension d, and the root mean square displacement 
exponent v for self-avoiding walks is destroyed by the anisotropic spiral constraint. 
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